Area's Best Wheelchair Vans For Sale!
Superior Van & Mobility Logo

Reversing paralysis with a restorative gel

Reversing Paralysis with a Restorative Gel?

Posted By News On May 13, 2013 – 4:30pm
https://www.sciencecodex.com/reversing_paralysis_with_a_restorative_gel-112053

Some parts of the body, like the liver, can regenerate themselves after damage. But others, such as our nervous system, are considered either irreparable or slow to recover, leaving thousands with a lifetime of pain, limited mobility, or even paralysis.

Now a team of Tel Aviv University researchers, including Dr. Shimon Rochkind of TAU’s Sackler Faculty of Medicine and Tel Aviv Sourasky Medical Center and Prof. Zvi Nevo of TAU’s Department of Human Molecular Genetics and Biochemistry have invented a method for repairing damaged peripheral nerves. Through a biodegradable implant in combination with a newly-developed Guiding Regeneration Gel (GRG) that increases nerve growth and healing, the functionality of a torn or damaged nerve could ultimately be restored.

This innovative project is now gaining international recognition. Its initial successes were reported recently at several renowned scientific congresses, including the World Federation of Neurological Societies and the European Neurological Society. And the therapy, already tested in animal models, is only a few years away from clinical use, says Dr. Rochkind.

Like healing in the womb

A nerve is like an electrical cable. When severed or otherwise damaged, power can no longer be transferred and the cable loses its functionality. Similarly, a damaged nerve loses the ability to transfer signals for movement and feeling through the nervous system.

But Dr. Rochkind and Prof. Nevo found a way to breach the gap. In their method, two severed ends of a damaged nerve are reconnected by implanting a soft, biodegradable tube, which serves as a bridge to help the nerve ends connect. The innovative gel which lines the inside of the tube nurtures nerve fibers’ growth, encouraging the nerve to reconnect the severed ends through the tube, even in cases with massive nerve damage, Dr. Rochkind says.

The key lies in the composition of the gel, the researchers say, which has three main components: anti-oxidants, which exhibit high anti-inflammatory activities; synthetic laminin peptides, which act as a railway or track for the nerve fibers to grow along; and hyaluronic acid, commonly found in the human fetus, which serves as a buffer against drying, a major danger for most implants. These components allow the nerve to heal the way a fetus does in the womb — quickly and smoothly.

Keeping cells safe for transplant

The implant has already been tested in animal models, and the gel by itself can be used as a stand-alone product, acting as an aid to cell therapy. GRG is not only able to preserve cells, it can support their survival while being used for therapy and transplantation, says Dr. Rochkind. When grown in the gel, cells show excellent development, as well as intensive fiber growth. This could have implications for the treatment of diseases such as Parkinson’s, for which researchers are actively exploring cell therapy as a potential solution.

Source: American Friends of Tel Aviv University

New Hope for Reversing the Effects of Spinal Cord Injury

New Hope for Reversing the Effects of Spinal Cord Injury

We are getting Closer!

Mar. 12, 2013 — Walking is the obvious goal for individuals who have a chronic spinal cord injury, but it is not the only one. Regaining sensation and continence control also are important goals that can positively impact an individual’s quality of life. New hope for reversing the effects of spinal cord injury may be found in a combination of stem cell therapy and physical therapy as reported in Cell Transplantation by scientists at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School.

“Our phase one/two clinical trial had one goal: to give patients who have no other treatment options some hope,” said Hatem E. Sabaawy, MD, PhD, an assistant professor of medicine in the molecular and regenerative medicine program at Robert Wood Johnson Medical School. “Early findings have concluded that we have met our goal and can improve the quality of life for individuals with spinal cord injuries by providing a safe treatment that restores some neurological function.”

Dr. Sabaawy led a clinical trial that included 70 patients who had cervical or thoracic spinal cord injuries and were previously treated for at least six months without response. The patients were randomized into two groups, both of which were given physical therapy treatment. One of the groups also received stem cells derived from their own bone marrow injected near the injury site. Using the American Spinal Injury Association Impairment (AIS) Scale, patients received neurological and physical evaluations monthly for 18 months to determine if sensory and motor functions improved.

“Of primary importance, there was a notable absence of side effects in patients treated with stem cells during the course of our investigation,” added Dr. Sabaawy, who also is a resident member of The Cancer Institute of New Jersey at Robert Wood Johnson Medical School.

None of the patients in the control group who received only physical therapy showed any improvement in sensory or motor function during the same time frame. Although the scale of injuries differed, all patients who were treated with a combination of bone-marrow derived stem cells and physical therapy responded to tactile and sensory stimuli as early as 4 weeks into the study. After 12 weeks, they experienced improvements in sensation and muscle strength, which was associated with enhanced potency and improved bladder and bowel control that eventually allowed patients to live catheter-free. Patients who showed improvement based on the AIS scale also were able to sit up and turn in their beds.

“Since the emergence of stem cells as a potential therapy for spinal cord injury, scientists have diligently sought the best application for using their regenerating properties to improve a patient’s mobility,” said Joseph R. Bertino, MD, University Professor of medicine and pharmacology, interim director, Stem Cell Institute of New Jersey and chief scientific officer at The Cancer Institute of New Jersey. “Dr. Sabaawy’s discovery that treatment is more successful when stem cell therapy is combined with physical therapy could provide a remarkable, and hopefully sustainable, improvement in the overall quality of life for patients with spinal cord injury.”

At the end of 18 months, 23 of the 50 patients who received both physical therapy and stem cell therapy showed a significant improvement of at least 10 points on the AIS scale. Several were able to walk with assistance. In addition, more gains were made in motor skill control by patients with thoracic spinal cord injuries, suggesting that patients with thoracic spinal cord injuries may respond better to the combined treatment.

Dr. Sabaawy however cautioned that more studies are needed with a larger number of patients to test different cell dose levels and intervals at which stem cell therapy should be delivered.

“Although a cure for spinal cord injury does not yet exist, it is clear that the regenerative and secretory properties of bone-marrow derived stem cells can improve symptoms of paralysis in some patients when coupled with the current standard of care that physical therapy provides,” said Dr. Sabaawy. “We will continue monitoring our patients for long-term safety effects of stem cell therapy and work to expand our research through a phase two clinical trial that can be conducted at multiple centers nationwide and internationally.”

For More Information: Visit https://www.sciencedaily.com/releases/2013/03/130312151947.htm